
NPS-AM-12-C9P06R03-055

bñÅÉêéí=cêçã=qÜÉ=

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

káåíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=
tÉÇåÉëÇ~ó=pÉëëáçåë=

sçäìãÉ=f=

=

Approved for public release; distribution is unlimited.
Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Certifying Tools for Test Reduction in Open
Architecture

Valdis Berzins
Naval Postgraduate School

Published April 30, 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
30 APR 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Certifying Tools for Test Reduction in Open Architecture

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper, we describe a method for evaluating tools that can be used to guide decisions about how
much retesting is needed and to check conditions under which testing of unmodified components can be
reduced or avoided. The approach uses a combination of dependency analysis applied to source code and
automated testing applied to executable component implementations. Dependability of such tools is a key
concern in this context which our ongoing research addresses. We also discuss other applications of
software dependency analysis, such as risk-based testing, and discuss applications of dependency analysis
to improve acquisition processes in the context of open architectures (OA). The Navy?s OA framework is
intended to promote reuse, improve system flexibility, and reduce costs. In this paper, we apply open
architecture principles to reduce testing effort and costs in cases where the requirements and code for a
subsystem have not been changed but the component will be used together with new or modified
components that may include a new version of the operating system. This situation is common in the Navy
due to technology advancement upgrades and accounts for a substantial fraction of the testing cost.
Applying traditional U.S. Navy weapon and combat system test and evaluation (T&E) practices, which
currently include manual retesting after each system modification, to future OA systems will nullify many
of the benefits that OA brings to the table, such as system scalability, rapid configuration changes, and
effective component reuse. Combining (1) Naval Postgraduate School (NPS) research on dependency
analysis focused on determining when it is safe not to retest a component with (2) automated software
testing should enable these benefits and keep resource requirements at feasible levels.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

37

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó=
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=

The research presented at the symposium was supported by the acquisition chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request defense acquisition research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Research Program’s sponsored research reports may be printed
from our website (www.acquisitionresearch.net).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=i -

=

Preface & Acknowledgements

Welcome to our Ninth Annual Acquisition Research Symposium! This event is the
highlight of the year for the Acquisition Research Program (ARP) here at the Naval
Postgraduate School (NPS) because it showcases the findings of recently completed
research projects—and that research activity has been prolific! Since the ARP’s founding in
2003, over 800 original research reports have been added to the acquisition body of
knowledge. We continue to add to that library, located online at
www.acquisitionresearch.net, at a rate of roughly 140 reports per year. This activity has
engaged researchers at over 60 universities and other institutions, greatly enhancing the
diversity of thought brought to bear on the business activities of the DoD.

We generate this level of activity in three ways. First, we solicit research topics from
academia and other institutions through an annual Broad Agency Announcement,
sponsored by the USD(AT&L). Second, we issue an annual internal call for proposals to
seek NPS faculty research supporting the interests of our program sponsors. Finally, we
serve as a “broker” to market specific research topics identified by our sponsors to NPS
graduate students. This three-pronged approach provides for a rich and broad diversity of
scholarly rigor mixed with a good blend of practitioner experience in the field of acquisition.
We are grateful to those of you who have contributed to our research program in the past
and hope this symposium will spark even more participation.

We encourage you to be active participants at the symposium. Indeed, active
participation has been the hallmark of previous symposia. We purposely limit attendance to
350 people to encourage just that. In addition, this forum is unique in its effort to bring
scholars and practitioners together around acquisition research that is both relevant in
application and rigorous in method. Seldom will you get the opportunity to interact with so
many top DoD acquisition officials and acquisition researchers. We encourage dialogue both
in the formal panel sessions and in the many opportunities we make available at meals,
breaks, and the day-ending socials. Many of our researchers use these occasions to
establish new teaming arrangements for future research work. In the words of one senior
government official, “I would not miss this symposium for the world as it is the best forum
I’ve found for catching up on acquisition issues and learning from the great presenters.”

We expect affordability to be a major focus at this year’s event. It is a central tenet of
the DoD’s Better Buying Power initiatives, and budget projections indicate it will continue to
be important as the nation works its way out of the recession. This suggests that research
with a focus on affordability will be of great interest to the DoD leadership in the year to
come. Whether you’re a practitioner or scholar, we invite you to participate in that research.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the ARP:

 Office of the Under Secretary of Defense (Acquisition, Technology, & Logistics)

 Director, Acquisition Career Management, ASN (RD&A)

 Program Executive Officer, SHIPS

 Commander, Naval Sea Systems Command

 Program Executive Officer, Integrated Warfare Systems

 Army Contracting Command, U.S. Army Materiel Command

 Office of the Assistant Secretary of the Air Force (Acquisition)

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=ii -

=

 Office of the Assistant Secretary of the Army (Acquisition, Logistics, &
Technology)

 Deputy Director, Acquisition Career Management, U.S. Army

 Office of Procurement and Assistance Management Headquarters, Department
of Energy

 Director, Defense Security Cooperation Agency

 Deputy Assistant Secretary of the Navy, Research, Development, Test &
Evaluation

 Program Executive Officer, Tactical Aircraft

 Director, Office of Small Business Programs, Department of the Navy

 Director, Office of Acquisition Resources and Analysis (ARA)

 Deputy Assistant Secretary of the Navy, Acquisition & Procurement

 Director of Open Architecture, DASN (RDT&E)

 Program Executive Officer, Littoral Combat Ships

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this symposium.

James B. Greene Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=147 -

=

Panel 6. Considerations in Acquiring Open
Architecture Software Systems

Wednesday, May 16, 2012

1:45 p.m. –
3:15 p.m.

Chair: Captain Joseph J. Beel, USN, Commanding Officer, Space and Naval
Warfare Systems Center Pacific

A Framework for Reuse in the DoN

Randy Mactal, Space and Naval Warfare Systems Center Pacific
Lynne Spruill, APEO Engineering Support

Addressing Challenges in the Acquisition of Secure Software Systems With
Open Architectures

Walt Scacchi and Thomas Alspaugh
University California, Irvine

Certifying Tools for Test Reduction in Open Architecture

Valdis Berzins, Naval Postgraduate School

Joseph J. Beel—Captain Joe Beel was commissioned from the U.S. Naval Academy in 1985,
earning a Bachelor of Science degree in mechanical engineering. He was designated a Naval Aviator
in September 1986. He completed Fleet Replacement Pilot training with HSL-31 in May 1987 and
joined the Sea Snakes of HSL-33, flying the SH-2F Sea Sprite until December 1989. He deployed in
the USS Kirk (FF1067), the USS Knox (FF 1052), the USS Francis Hammond (FF1067), and the USS
Sterrett (CG 31), including service in Operation Earnest Will.

He attended the Naval Postgraduate School in Monterey, CA, from 1990 until 1992, earning a
Master of Science (with distinction) in operations research. He taught in the U.S. Naval Academy
Mathematics Department from May 1992 until May 1995 and served as the Fifth Company Officer
from August 1993 until May 1995. He also served as an advanced seamanship and navigation
instructor and was designated a craftmaster/yard patrol craft officer-in-charge afloat.

Captain Beel completed Fleet Replacement Pilot training with HSL-41 in February 1996 and
joined the Battle Cats of HSL-43, flying the SH-60B Sea Hawk until 1998. He deployed in the USS
Princeton (CG 59).

From June 1998 until August 1999, Captain Beel served as the training and education program
analyst in the Assessment Division (N81), Office of the Chief of Naval Operations. He served in a
Federal Executive Fellowship at the RAND Corporation in Santa Monica, CA, from August 1999 to
August 2000. From August 2000 until September 2002, he served in the USS John C. Stennis (CVN
74), including service in Operations Noble Eagle and Enduring Freedom. He served as officer-in-
charge of Navy Warfare Development Command, Detachment San Diego, from October 2002 until
August 2003. He served as commanding officer and executive officer, Naval Air Technical Data and
Engineering Service Command (NATEC), from September 2003 until September 2006.

Most recently, Captain Beel served four years in the Program Executive Office (PEO), Command,
Control, Communication, Computers, and Intelligence (C4I); as PEO chief of staff and deputy for
Operations from October 2006 to June 2008; and as deputy program manager of the Navy Tactical
Networks Program Office from June 2008 to August 2010.

Captain Beel is a member of the Defense Acquisition Corps and is Level III certified in Program
Management, Life Cycle Logistics and Production, and Quality and Manufacturing. He is a certified

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=148 -

=

Lean Six Sigma Black Belt. He led a continuous process improvement project that was awarded a
California Council of Excellence California Team Excellence bronze award and was selected to
compete for the American Society of Quality’s International Team Excellence Award at the 2011
World Conference on Quality and Improvement.

Captain Beel’s awards include the Meritorious Service Medal (three awards), Air Medal (individual
award), Navy Commendation Medal (five awards), Navy Achievement Medal, and various unit,
campaign, and service awards. He has also received the Sikorsky “Winged-S” Lifesaving Rescue
Award.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=185 -

=

Certifying Tools for Test Reduction in Open Architecture

Valdis Berzins—Berzins is a professor of computer science at the Naval Postgraduate School. His
research interests include software engineering, software architecture, reliability, computer-aided
design, and software evolution. His work includes software testing, reuse, automatic software
generation, architecture, requirements, prototyping, re-engineering, specification languages, and
engineering databases. Berzins received BS, MS, EE, and PhD degrees from MIT and has been on
the faculty at the University of Texas and the University of Minnesota. He has developed several
specification languages, software tools for computer-aided software design, and fundamental theory
of software merging. [berzins@nps.edu]

Abstract
In this paper, we describe a method for evaluating tools that can be used to guide decisions
about how much retesting is needed and to check conditions under which testing of
unmodified components can be reduced or avoided. The approach uses a combination of
dependency analysis applied to source code and automated testing applied to executable
component implementations. Dependability of such tools is a key concern in this context,
which our ongoing research addresses. We also discuss other applications of software
dependency analysis, such as risk-based testing, and discuss applications of dependency
analysis to improve acquisition processes in the context of open architectures (OA).

The Navy’s OA framework is intended to promote reuse, improve system flexibility, and
reduce costs. In this paper, we apply open architecture principles to reduce testing effort and
costs in cases where the requirements and code for a subsystem have not been changed,
but the component will be used together with new or modified components that may include a
new version of the operating system. This situation is common in the Navy due to technology
advancement upgrades and accounts for a substantial fraction of the testing cost.

Applying traditional U.S. Navy weapon and combat system test and evaluation (T&E)
practices, which currently include manual retesting after each system modification, to future
OA systems will nullify many of the benefits that OA brings to the table, such as system
scalability, rapid configuration changes, and effective component reuse. Combining (1) Naval
Postgraduate School (NPS) research on dependency analysis focused on determining when
it is safe not to retest a component with (2) automated software testing should enable these
benefits and keep resource requirements at feasible levels.

Introduction
Open architecture (OA) promises cost savings and other benefits for the Navy. The

weakest parts of this vision are the associated quality assurance (test & evaluation)
processes and coordination among platform-oriented program offices (resource allocation).
Our research has been aimed at providing conceptual and engineering support that can be
leveraged to alleviate these weaknesses. In this paper, we report some recent results in
these directions.

Traditional software testing techniques, like scenario-based integration testing, are
commonly used for assessing the dependability of today’s software systems. These
techniques are strongly dependent on a particular system configuration and its platform. A
major drawback is that when the system configuration or its platform changes, it is
necessary to reconstruct the test cases and rerun them. Plugging in a new software
component will lead to a completely different system and will likely invalidate previous test
results, while changes to the cyber environment may reduce the effective coverage of the
test scenarios previously used. This is the rationale for current test and evaluation policies
that require complete regression testing of each new release.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=186 -

=

The main challenge we perceive in test and evaluation is how to safely reduce
duplication of effort when performing regression testing on new releases of systems with
long lifetimes. The goal of regression testing is to verify that the behavior of software
services that were not supposed to be changed from the previous release are not adversely
affected by the new operating environment or interactions with new or modified code. Our
overall approach to this challenge is

1. to utilize software slicing to determine when it is safe to reuse previous test
results for components whose specifications and code remain unchanged
from the previous release;

2. to utilize automated invariance testing to economically verify that modules
whose code has changed but whose specifications have not changed relative
to the previous release have not changed their behavior in the new release;
and

3. to utilize operational profiles and associated analysis of probability
distributions to determine which parts of the input space need additional test
cases when a reusable component is deployed in a different environment
(such as an additional platform) and to automatically generate the
corresponding test data.

A road map for the overall approach can be found in Berzins, Rodriguez, and
Wessman’s 2007 article “Putting Teeth into Open Architectures: Infrastructure for Reducing
the Need for Retesting,” and details can be found in Berzins’s 2008 article, “Which
Unchanged Components to Retest After a Technology Upgrade”; Berzins and Dailey’s 2009
article, “How to Check If It Is Safe Not to Retest a Component”; Berzins and Dailey’s 2010
article, “Improved Software Testing for Open Architecture”; and Berzins, Lim, and Kahia’s
2011 article, “Test Reduction in Open Architecture via Dependency Analysis.” In this paper,
we provide additional material on new applications of software dependency analysis
(software slicing) and on our preliminary work on assessing commercial software tools with
respect to their ability to reliably carry out the necessary calculations to perform the analyses
we propose.

Our approach to improving coordination between program offices that are involved
with components shared across platforms or cross-cutting missions and capabilities that
involve many platforms and systems is new in this paper and is discussed in the section
titled Slicing for Risk-Based Acquisition.

Software Dependency Analysis
The main dependencies between software modules are associated with data flow

and control flow, both of which can be mediated by networks. Additional dependencies are
associated with exclusive access to shared resources, which are usually mediated by low-
level locks. A dependency between two software modules means that the behavior of one
module can be influenced by the behavior of the other.

Slicing for Safe Test Reduction

Program slicing (Weiser, 1984) is a type of dependency analysis that eliminates
program statements irrelevant to a given slicing criterion. Slicing algorithms detect and
follow dependencies of the kinds described above. A survey of known slicing algorithms can
be found in Lim and Kahia (2011). Typical slicing criteria limit attention to the software
behavior visible from a particular observation point, such as given output from the system or
the result produced by a given software service. This means that a base program and its
slice will produce the same results for the subset of interest (Gallagher & Harman, 1998). In

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=187 -

=

particular, if a given software service has the same slice in the new release and the previous
one, the results it produces will be the same in both releases, and it is only necessary to
recheck any required timing constraints and resource constraints, such as memory and
network bandwidth limitations. That can be done by focused stress testing, which takes
much less effort than repeating a full set of regression tests for the given software service.

Slicing for Risk-Based Testing

Previous work on system risk assessment in the context of safety certification has
combined the severity of potential failures with the estimated probabilities of occurrence to
gauge risks associated with system operation, but this work is directly applicable at only the
whole-system level. This is due to the fact that software-related operational hazards are
mostly associated with the physical parts of the system, which are only indirectly affected by
the software.

We are developing similar methods to determine how much testing and what other
risk mitigation measures, if any, should be applied to each software component in an open
architecture. However, the relationship between the individual embedded software
components and the associated external effects is currently difficult to determine due to the
size and complexity of practical software components and the lack of automated decision
support. We are investigating how to apply software slicing and related dependency analysis
techniques to solve this challenge. To our knowledge, this will be the first attempt to apply
this new approach to address this system-of-systems challenge.

The intended principles of operation for the proposed software risk mitigation
approach are as follows:

1. Perform a conventional whole-system operational risk analysis using
approaches adapted from safety procedures certification, such as “MIL STD
882-D” (DoD, 2000). The result of this step is a list of potential mishap types
associated with and ranked by their risk levels. We propose to extend the
definition of mishaps in this context to include various aspects of mission
failures that could be induced by system failures, in addition to the types of
mishaps traditionally considered in a safety certification.

2. Perform a system level dependency trace to identify which subsystems affect
each type of mishap listed in Step 1, and which software services affect each
of those subsystems.

3. Perform a software dependency analysis using software slicing to identify
which software modules affect each of the software services.

4. Using mishap list from Step 1 and the dependency relations from Steps 2–3,
identify the set of potential mishaps that can be affected by each software
module.

5. Associate the maximum-risk level of the set of mishaps identified in Step 4
with the corresponding software modules.

6. Use the risk level derived in Step 5 to determine the level of testing and
possibly levels of additional risk mitigations to be associated with each
software module.

The overall impact of adopting this approach would be more effective test and
evaluation. If the worst-case risks associated with each component are known, then they
can provide a principled and systematic basis for determining how much testing each
component needs. This approach should be able to put the informal guideline to “test the
most critical components the most thoroughly” on a sound quantitative basis, by providing

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=188 -

=

an objective means for calculating how many test cases are needed for a given component,
based on the associated risk levels. Some of the building blocks needed for this calculation
can be found in Berzins’s 2008 article, “Which Unchanged Components to Retest after a
Technology Upgrade.”

The testing approach described previously seeks to limit operational risks by running
more test cases on the modules whose failure would lead to the most severe
consequences. This is a statistical procedure aimed at reducing the likelihood of sampling
errors—that is, reducing the likelihood that the finite set of test cases actually run passes
successfully by pure chance, even though the failure rate of the component is actually
unacceptably high. This kind of procedure can reduce failure rates but cannot guarantee
complete absence of operational failures except in those rare cases where it is feasible to
exhaustively test all possible combinations of system state and input values to the software
component.

In cases where consequences of software failure are particularly severe, it is
possible to modify the software design to provide additional structural risk mitigations. Some
examples of these include

 Software safety interlocks: small, simple software modules whose only purpose
is to isolate a safety-critical resource and to enforce safety constraints. This is
typically done by limiting direct access to the critical resource to a small set of
operations that can be effectively analyzed to show all possible sequences of
operations satisfy the needed safety constraints.

 Redundant design: critical operations are realized by disparate, independently
developed algorithms that are run in parallel. Results are compared and
discrepancies are resolved by a voting procedure. This approach is effective if
failures in the different algorithms are uncorrelated and the probability of any
single algorithm failing on any possible input is less than 50%.

 Runtime monitoring: critical constraints are checked after each execution, and
alternatives are used when the checks fail. This method is effective when there
exist feasible mitigation strategies. For example, communication failures can
sometimes be mitigated by retransmitting failed messages along different
network paths, or processor failures can be mitigated by repeating the
computation on different host hardware.

Slicing for Risk-Based Acquisition

Similar risk-based concerns arise on a larger scale in the acquisition of systems,
particularly in desired future applications of open architectures in which software
components are shared extensively across different platforms. In this context, risk severity
would measure the impact of possible failures of system capabilities or supporting software
services on different types of missions. The risk analysis process described in the previous
section can be extended to support such enterprise-wide cost/benefit analysis.

The resulting analysis would support system-wide and enterprise-wide planning in
the overall acquisition process by providing objective measures of the benefits/risks
associated with implementing particular capabilities and services in a given system release
or deciding to delay those capabilities and services to a later release. Having such
measures could alleviate the tendency to reach globally sub-optimal acquisition planning
due to independent local optimization by each program office, which is typically responsible
for a single platform. Cross-cutting concerns that affect the interaction of multiple platforms,
such as those sharing a given component, do not have an advocate with authority to carry

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=189 -

=

out enterprise-wide optimization in the current process. Lacking centralized authority, visible
measures of the enterprise-wide tradeoffs could provide an objective basis for negotiation
and cooperation between program offices impacted by cross-cutting concerns, given
appropriate leadership and encouragement. Such cooperation would be very difficult without
accepted objective measures of the impact of alternative decisions, because program
offices compete for resources and each has its own set of local priorities.

We suggest extending slicing and dependency analysis from code level to the
software and system architecture levels to support the process described above. If
developed to the point where the enterprise-wide impacts of deployment decisions related to
individual components can be objectively measured, this can improve consistency of
priorities across the enterprise. In the best case, it could reduce the waste associated with
situations where a capability has been implemented on a given platform but is not
accessible from the other platforms that need that capability to successfully cooperate to
perform a larger mission. For this purpose, it would not be necessary to provide quantitative
estimates of the risk/benefits of various missions; priorities determined by rank-ordering the
importance of various missions would be sufficient.

Robust composite systems can be composed of components in a disciplined
manner, according to carefully designed software architecture. A software architecture
consists of

1. a set of components,

2. an interconnection pattern for the components, and

3. a set of constraints on the components and connections.

The constraints typically express various kinds of requirements associated with the
entire system, as well as with the components and connections of the architecture
(Proceedings of the 4th Monterey Workshop, 1995; Luqi, Qiao, & Zhang, 2002). We propose
that the development and analysis of robust architectures be combined with methods for
determining the priority order for implementing and deploying a variety of system
refinements and extensions that can be supported by the architecture. These methods
should provide guidance for the effective allocation of development resources and
schedules in the context of phased acquisition planning for a series of system releases.

The priority of a mission should be inherited by all of the capabilities and subsystems
on which the mission is dependent. In the simplest case, a component supporting many
different missions would get the priority of the most important mission it supports. This
simple case assumes that independently meaningful priorities can be assigned to individual
missions, which is not always the case, as pointed out by a common criticism of the well-
known analytic hierarchy process (AHP) for assigning priorities based on pairwise
comparisons (Saaty, 2008). For example, it will be difficult for a soldier to say which is more
important: having a weapon or having ammunition. The reason is that neither one in
isolation has much value—the soldier needs to have both for them to make a difference. In
cases where bundles of missions have this kind of priority interaction, the analysis model
can represent a bundle of synergistic missions as an indivisible unit that can be assigned a
meaningful priority. Each individual mission that belongs to at least one such mission bundle
can inherit the highest priority of all the mission bundles it belongs to.

The proposed priority inheritance pattern is illustrated by the small example in Tables
1 and 2.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=190 -

=

Table 1.

Mission Group Priorities
Mission Bundle Priority Members
Bundle 1 High M1, M2
Bundle 2 Medium M1, M3

Table 2.

Inherited Priorities for Individual Missions
M1 High
M2 High
M3 Medium

Note that mission M1 belongs to two different mission bundles, and that its priority is
the highest of the priorities of the two bundles it belongs to. The priority assignment
illustrated would imply that the available choices are (1) to fund Bundle 1 alone, which would
support missions M1 and M2; (2) to fund both Bundle 1 and Bundle 2, which would support
missions M1, M2, and M3; or (3) to fund neither of them. Similar processes can be applied
at the level of system components or system services supporting each mission.

Although assigning priorities is always a contentious issue, our hypothesis is that it is
easier to get agreement on the relative priorities of different types of missions than it is to
get agreement on priorities of particular system components. If a cross-cutting mission is
important enough to be resourced, then we propose that it should get all of the components
needed to make it operational, regardless of which program offices are responsible for those
components. It does not make sense to deploy incomplete parts of capabilities needed to
support an important mission any more than it does to issue a weapon to a soldier without
ammunition or ammunition without a weapon. If this proposition is accepted, architecture-
level dependency analysis relative to sets of missions will be needed to translate priorities of
missions and mission groups into corresponding priorities of system components and
services. Suitable extensions of slicing technology and associated tool support can help
carry out that analysis on a large scale.

Game-Theoretic Risk Analysis

The section titled Slicing for Risk-Based Testing describes a conventional statistical
approach to risk analysis and mitigation. Such an approach is sensible when the dominant
root cause of the failures we are trying to prevent is random failure of physical components,
or random variations in operating conditions and input data that could exercise fixed but
unknown software faults that could in turn trigger actual failures or mishaps.

Such a model may not be adequate for assessing risks due to possible cyber-attacks
or other forms of deliberate enemy action. In this case, stationary probability distributions do
not provide an accurate view of the expected frequency of mishaps, unless we assume
incompetent adversaries. Given the military’s concern with nation-state actors, that is not a
safe assumption to make.

Saddle point solutions from game theory may provide a more accurate
representation of risk situations associated with deliberate attacks. A saddle point solution
minimizes the worst-case damage that could be inflicted by any action the adversary could
feasibly perform. Some examples of this type of risk analysis in the context of security
aspects of cyber-physical systems can be found in Andreasson et al. (2011) and Zhu and
Basar (2011). We are investigating the hypothesis that this approach can be combined with
slicing to support both risk-based testing and risk-based acquisition.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=191 -

=

Slicing Tools
Our preliminary analysis has identified Indus’s static slicing tool for Java programs as

the most promising candidate for detailed assessment, as well as some of the criteria for
evaluating such tools and a few test cases derived from the criteria (Berzins et al., 2011).
Other tools were identified but not selected for detailed evaluation due to licensing issues,
concerns about tool stability, lack of support, and the relevance of the target programming
language supported by the tool (Lim & Kahia, 2011).

Tool Certification Approach

Evaluation Criteria

We have proposed a set of evaluation criteria for slicing tools (Berzins et al., 2011;
Lim & Kahia, 2011). These criteria can be summarized as follows

 The tool must generate sound slices: all statements that can affect software
behavior at the specified observation point must be included.

 The tool must operate on at least one programming language of concern in open
architectures. Those include Java, C/C++, and Ada.

 The tool must have adequate documentation and support.

 Installation procedures and tool operation must work as advertised.

 The tool must support output and/or comparison of computed slices.

The first criterion is necessary for safe reduction of testing. It implies that the tool
must handle all language features used in realistic applications, and must properly detect
the associated dependencies. This is a potential issue because many of the slicing
algorithms developed by academic research were published and described in terms of
simplified models of programming languages. Slicing algorithms capable of properly
analyzing some programming language features in common practical use have only recently
been developed and published. Language features of this kind include the following:

 pointers and objects,

 parallel threads of control,

 exceptions,

 nondeterministic selection,

 locks and synchronizations, and

 external dependencies: libraries, databases, etc.

Tool capabilities to handle these software features should be explicitly assessed via
test cases because there is a plausible risk that the relevant recent research results may not
have been completely or correctly implemented in available commercial tools.

In addition to the sharp requirements identified above, slicing tools have a preference
metric: the smaller the slice, the more effective the tool will be in reducing redundant
regression testing. It is not possible to get a perfect solution to this problem because finding
exact minimum size slices is known to be algorithmically unsolvable (Weiser, 1984). The
entire program is always a valid slice but has no discrimination power and is useless for test
effort reduction. Practical tools seek to find “small” slices that are not guaranteed to have
globally minimal size. Therefore, tools should be compared for relative discrimination power
using the above preference metric.

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=192 -

=

Assessment Approach

We will conduct a two-phase assessment. The first phase will consist of running a
hand-crafted set of test cases aimed at checking the criteria, given in the previous section,
with particular attention to language features and issues that have been noted as potentially
problematic in the literature. A preliminary set of such test cases can be found in Lim and
Kahia (2011).

The second phase will consist of a larger case study. We are currently seeking a
suitable open source software system suitable for evaluating Indus’s Kaveri slicing tool. The
key features we seek are

 a design with multiple modules and subsystems,

 access to multiple releases of the source code,

 access to specifications or descriptions of the versions that at a minimum identify
which services were intended to be modified in each release, and

 access to test results and problem reports for each version.

The proposed assessment will use the slicing analysis to determine which modules
were safe not to retest and then compare the conclusions with actual test results and
problem reports from the field. The plan is to analyze versions that are old enough to have
post-mortem information about field experiences available.

Conclusion
The work reported here is a step towards an affordable approach to providing robust

adaptable software systems in the context of open architectures.

Robust adaptive software design requires substantial architectural support. Sound
architectural models for cyber systems with adaptable software components and associated
quality assurance methods collectively gain the ability to replace bits of systems while
maintaining system dependability (Hinchey & Vasev, 2010). System design with recorded
rationale can make testing of adaptable cyber systems possible.

This requires a shift from scenario-based testing to architecture-based quality
assurance (Luqi, Zhang, Berzins, & Qiao, 2004; Qiao & Luqi, 2004; Luqi, 2006), along with a
shift from code-based adaptation to architecture based adaptation (Oreizy et al., 1999;
Garlan, Cheng, Huang, Schmerl, & Steenkiste, 2004; Calinescu, 2009). A good cyber
system architecture would have associated dependability properties that express stable
system requirements, requirements on the subsystems, and a sound software evolution
model capturing the design rationale (Rajkumar, Lee, Sha, & Stankovic, 2010). The
architecture itself would provide some degree of dependability guarantees, regardless of
specific configuration. Testing and analysis would be applied to a suitably specified
architectural model in addition to the system implementation. Software slicing is one aspect
of this analysis.

Software slicing is a realistic approach to safely reducing regression testing in
adaptable systems. Practical application requires dependable tools for software slicing.
Ongoing research is conducting an evaluation of such tools. Preliminary results and
additional potential applications of such tools are presented in this paper.

References
Andreasson, M., Amin, S., Schwartz, G., Johansson, K., Sandberg H., & Sastry, S. (2011, April).

Correlated failures of power systems: Analysis of the Nordic grid. In Proceedings of Workshop
on the Foundations of Dependable and Secure Cyber-Physical Systems (pp. 9–17).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=193 -

=

Berzins, V. (2008, May). Which unchanged components to retest after a technology upgrade. In
Proceedings of the Fourth Annual Acquisition Research Symposium: –Creating Synergy for
Informed Change (pp. 142–153). Monterey, CA: Naval Postgraduate School.

Berzins, V., & Dailey, P. (2009, May). How to check if it is safe not to retest a component. In
Proceedings of the Sixth Annual Acquisition Research Symposium: Defense Acquisition in
Transition (pp. 189–200). Monterey, CA: Naval Postgraduate School.

Berzins, V., & Dailey, P. (2010, May). Improved software testing for open architecture. In Proceedings
of the Seventh Annual Acquisition Research Symposium: Creating Synergy for Informed Change
(pp. 385–398). Monterey, CA: Naval Postgraduate School.

Berzins, V., Lim, P., & Kahia, M. B. (2011, May). Test reduction in open architecture via dependency
analysis. In Proceedings of the Eighth Annual Acquisition Research Symposium (pp. 333–344).
Monterey, CA: Naval Postgraduate School.

Berzins, V., Rodriguez, M., & Wessman, M. (2007, May). Putting teeth into open architectures:
Infrastructure for reducing the need for retesting. In Proceedings of the Fourth Annual
Acquisition Research Symposium: –Creating Synergy for Informed Change (pp. 285–312).
Monterey, CA: Naval Postgraduate School.

Calinescu, R. (2009). Reconfigurable service-oriented architecture for autonomic computing.
International Journal on Advances in Intelligent Systems, 2(1), 38–57.

DoD. (2000, February 10). MIL STD 882D - Standard practice for system safety. Retrieved from
http://www.everyspec.com

Gallagher, K., & Harman, M. (1998). Program slicing [Special issue]. Information and Software
Technology, 40(11/12), 1–10.

Garlan, D., Cheng, S., Huang, A., Schmerl, B., & Steenkiste, P. (2004). Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer, 37(10), 46–54.

Hinchey, M., & Vasev, E. (2010). Software verification of autonomic systems developed with ASSL. In
Monterey Workshop on Modeling, Development, and Verification of Adaptive Systems (pp. 7–
15).

Lim, P., & Kahia, M. B. (2011, June). Suitability of commercial slicing tools for safe reduction of the
testing effort (Master’s thesis, Naval Postgraduate School). Monterey, CA: Naval Postgraduate
School.

Luqi. (2006, May 6). Transforming documents to evolve high-confidence systems. In Proceedings of
Workshop on Advances in Computer Science and Engineering (pp. 71–72).

Luqi, Qiao, Y., & Zhang, L. (2002, October). Computational model for high-confidence embedded
system development. In Monterey Workshop: Radical Innovation of Software and System
Engineering in the Future (pp. 265–303).

Luqi, Zhang, L., Berzins, V., & Qiao, Y. (2004). Documentation driven development for complex real-
time systems. IEEE Transactions on Software Engineering, 30(12), 936–952.

Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G., Medvidovic, . . . Wolf, A. (1999). An
architecture-based approach to self-adaptive software. Intelligent Systems and their
Applications, IEEE, 14(3), 54–62.

Proceedings of the 4th Monterey workshop on specification based software architectures. (1995).
Monterey, CA.

Qiao, Y., & Luqi. (2004). Admission control for dynamic software reconfiguration in systems of
embedded Systems. In Proceedings of the 2004 International Conference on Embedded
Systems and Applications.

Rajkumar, R., Lee, I., Sha, L., & Stankovic, J. (2010). Cyber-physical systems: The next computing
revolution. In Proceedings of the 47th Design Automation Conference (pp. 731–736).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ãW=
`êÉ~íáåÖ=póåÉêÖó=Ñçê=fåÑçêãÉÇ=ÅÜ~åÖÉ= -=194 -

=

Saaty, T. (2008). Relative measurement and its generalization in decision making: Why pairwise
comparisons are central in mathematics for the measurement of intangible factors: The analytic
hierarchy/network process. RACSAM (Review of the Royal Spanish Academy of Sciences,
Series A, Mathematics), 102(2), 251–318.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering, 10(4), 352–357.

Zhu, Q., & Basar, T. (2011). Towards a unifying security framework for cyber-physical systems. In
Proceedings of Workshop on Foundations of Dependable and Secure Cyber-Physical Systems
(pp. 47–50).

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó
k~î~ä=mçëíÖê~Çì~íÉ=pÅÜççä=
RRR=aóÉê=oç~ÇI=fåÖÉêëçää=e~ää=
jçåíÉêÉóI=`^=VPVQP=

www.acquisitionresearch.net

1

Certifying Tools for Test Reduction in Open
Architecture

Valdis Berzins

Naval Postgraduate School

U.S. Navy Open Architecture

• A multi-faceted strategy for developing joint
interoperable systems that adapt and exploit
open system design principles and architectures

• OA Principles, processes, and best practices:
– Provide more opportunities for completion and innovation

– Rapidly field affordable, interoperable systems

– Minimize total ownership cost

– Maximize total system performance

– Field systems that are easily developed and upgradable

– Achieve component software reuse

2

Problem and Proposed Solution

• Traditional U.S. Navy Software T&E practices
will limit many benefits of OA
– It is virtually impossible to field frequent and rapid

configuration changes with current approaches

• New Testing Technologies, Processes &
Policies are Needed
– Safely Reduce Testing Required (2007-2012)

– Make testing more effective
• Risk-based testing (2012), safe test result reuse (Berzins, 2009)

– Transition from Manual Testing to Profile-Based
Automated Statistical Testing (Berzins, 2010)

– Dependency-based acquisition (2012)

3

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed

Code changed, specs unchanged

C5 C4

OS
S2S1

C2 C3C1

Code and specs unchanged

Code and specs changed

Code changed, specs unchanged

C5 C4

 = No retest due to slicing

Test Avoidance Approach

4

Program Slicing

• Program slicing is a kind of automated
dependency analysis
– Same slice implies same behavior

– Can be computed for large programs

– Depends on the source code, language specific

– Some tools exist, but are not in widespread use

• Slicing tools must handle the full programming
language correctly to support safe reduction of
testing.

5

Test Reduction Process

• Check that the slice of each service is the same in
both versions (automated)

• Check that the requirements and workload of each
service are the same in both versions

• Must recheck timing and resource constraints

• Must certify absence of memory corrupting bugs
– Popular tools exist: Valgrind, Insure++, Coverity, etc.

• Must ensure absence of runtime code modifications
due to cyber attacks or physical faults
– Cannot be detected by testing because modifications

are not present in test loads

– Need runtime certification
• Can be done using cryptographic signatures (Berzins, 2009)

 6

7

The Current Problem

To Evaluate the Suitability of
COTS Slicing Tools

for Supporting Safe Test Reduction

8

Current Research Objectives

1. To conduct experimental assessments and
compare the suitability of the available COTS
program slicing tools for safe reduction of
testing effort.

2. To identify the most adequate slicing tools
among the evaluated ones.

3. To determine the suitability of available COTS
program slicing tools for practical SW test
reduction.

4. To explore additional benefits of dependency
analysis

9

Requirements for Slicing Tools

1. Must satisfy the behavior invariance property:
• If the original program terminates cleanly,

the slices must terminate cleanly and
produce the same result as the original
program for all observable values specified
by the slicing criterion.

2. Must support comparison or output of
computed slices

3. Must support modeling of external
dependencies

Examples of Dependencies

1 int bar(int k) {

2 int v;

3 if (k == 0)

4 v = 1;

5 else

6 v = 2;

7 return v;

8 }

10

1 int foo(int k) {

2 Pointer v, u;

3 v = new Pointer();

4 u = v;

5 if (k == 0)

6 v.o = 1;

7 else

8 v.o = 2;

9 u.o = 4;

10 return v.o;

11 } Legend

Control Dependency

Data Dependency

Pointer Aliasing Dependency

28

29 class Spouse implements Runnable {

30 private Account save;

31 private float amount;

32 public Spouse(Account account, float a) {

33 save = account;

34 amount = a;}

35 public void run() {

36 save.withdraw(amount);

37 (new Account()).deposit(10);

38 }

39 }

40

41 class Home {

42 public static void main(String[] s) {

43 Account savings = new Account();

44 Runnable worker = new Worker(savings, 90);

45 Runnable spouse = new Spouse(savings, 10);

46 new Thread(worker).start();

47 new Thread(spouse).start();

48 }

49 }

1 class Account {

2 private float amount = 0;

3

4 public synchronized float withdraw(float x) {

5 while (amount − x < 0) {

6 try {wait ();} catch (Exception e) { }

7 }

8 amount = amount − x;

9 return amount;

10 }

11 public synchronized float deposit(float x) {

12 amount = amount + x;

13 notifyAll ();

14 return amount;

15 }

16 }

17

18 class Worker implements Runnable {

19 private Account save;

20 private float amount;

21 public Worker(Account account, float a) {

22 save = account;

23 amount = a;}

24 public void run() {

25 save.deposit(amount);

26 }

27 }

Examples of Parallel Dependencies

11

Slicing Example

12

Legend:

Resolution of slices computed by Kaveri

Partially Relevant Slice

100% Relevant Slice

Using slicing criterion {8, p1.a} for both (a) and (b)

1 public class Test {

2 public static void main(String[] args) {

3 point p1 = new point();

4 point p2 = new point();

5 p1.a = 1;

6 p2.a = 2; //should not be relevant

7 System.out.println("irrelevant1");

8 System.out.println("P1: a= "+p1.a);

9 System.out.println("irrelevant2");

10 System.out.println("P2: a= "+p2.a);

11 }

12 }

(a)

1 public class Test {

2 public static void main(String[] args) {

3 point p1 = new point();

4 point p2 = p1;

5 p1.a = 1;

6 p2.a = 2; //should be relevant

7 System.out.println("irrelevant1");

8 System.out.println("P1: a= "+p1.a);

9 System.out.println("irrelevant2");

10 System.out.println("P2: a= "+p2.a);

11 }

12 }

(b)

Difference

13

Project Status

• Experimental assessment is in progress
and not yet complete.
– The team is currently instrumenting the

tools and developing additional test cases.

• Developed the initial framework for two
additional uses of dependency analysis:
– Risk based testing
– Risk based acquisition

Risk Based Testing

1. Whole-system operational risk analysis
identify potential mishaps / mission failures

2. Identify which software service failures
would lead to identified mishaps

3. Use slicing to identify which software
modules affect the critical services

4. Associate maximum risk level of affected
services with each software module

5. Set number of test cases using risk level

14

Current Policy for Mishap Risk Assessment

15

MISHAP SEVERITY CATEGORIES
FREQUENCY OF
OCCURRENCE

1

CATASTROPHIC

2

CRITICAL

3

MARGINAL

4

NEGLIGIBLE

A – FREQUENT

P ≥ 10%
1A 2A 3A 4A

B – PROBABLE

10% P ≥ 1%
1B 2B 3B 4B

C – OCCASIONAL

1% P ≥ 0.1%
1C 2C 3C 4C

D – REMOTE

.1% > P ≥ 0.0001%
1D 2D 3D 4D

E – IMPROBABLE

0.0001% > P
1E 2E 3E 4E

Cells: Risk Level & Acceptance Authority:
1A, 1B, 1C, 2A, 2B: HIGH – ASN (RDA)

1D, 2C, 3A, 3B: SERIOUS - PEO-IWS

1E, 2D, 2E, 3C, 3D, 3E, 4A, 4B:
MEDIUM –PEO-IWS 3

4C, 4D, 4E: LOW – PEO-IWS 3

P: Probability of occurrence in the lifetime of an individual system, ranges taken from MIL_STD-882D

Risk Based Acquisition

1. Identify missions and scenarios that systems
must support

2. Assign priorities to missions / scenarios
based on impact of success or failure

3. Use dependency analysis to identify which
system components affect mission success

4. Associate maximum priority of affected
missions / scenarios with each component

5. Allocate funding per priority level, regardless
of which program offices are responsible.

16

Example

Mission Group Priorities

Mission Bundle Priority Members

Bundle 1 High M1, M2

Bundle 2 Medium M1, M3

17

Inherited Priorities for Individual Missions

M1 High

M2 High

M3 Medium

Priorities of different bundles must be different

Assumptions

1. It is less contentious to prioritize missions
and scenarios than system components

2. In the absence of cross-cutting budget
authority, a principled basis for cross-cutting
allocation is needed to reach agreement.

3. As more components are shared across
platforms, such issues will gain importance.

18

19

Conclusion
• For systems with long lifetimes, regression

testing is a major cost component in each
new release, including periodic technology
upgrades.

• Program Slicing has the potential to reduce
the time and cost of the regression testing
that is necessary to ensure the safety and
effectiveness of each new release.

• Preliminary evaluation criteria for slicing
tools in the context of their ability to achieve
safe reduction of regression testing have
been developed.

Thank you

